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Abstract

Regarding the impact of digitization on the environment, a definitive consensus remains elusive 
in the scholarly discourse. This article evaluates the carbon emissions impact of China’s National 
Supercomputing Centers (NSCs) in terms of computational power, aiming to determine whether 
NSCs exhibit significant carbon emissions effects and to identify the underlying factors driving them. 
Theoretically, we integrate both direct and indirect effect into a comprehensive research framework, 
comprising the dimensions of energy consumption and energy structure. Empirically, the synthetic 
control method (SCM) is employed, constructing a group of synthetic control cities that closely resemble 
the NSC cities. The research findings show that NSC cities exhibit statistically significant differences 
in carbon emissions compared to synthetically non-NSC cities, yet this phenomenon manifests with 
intercity heterogeneity. Upon scrutinizing the driving factors, it becomes apparent that NSCs primarily 
elevate urban energy consumption scale through increased industrial electricity usage, thus fostering 
the escalation of local carbon emissions. Interestingly, in certain cities, despite witnessing a surge in 
energy consumption scale attributable to NSC, carbon emissions effects were not observed, which could 
be predominantly ascribed to a higher proportion of clean energy within the energy structure. The above 
results unveil the existence of NSC carbon emissions effect as well as its driving factors (high energy 
consumption and dirty energy using), providing policy guidance for public sectors aiming to enhance 
NSC operational efficiency, optimize energy structure, and broaden the spillover effect.
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Introduction

According to the AR6 Synthesis Report: Climate 
Change 2023, during the period of 2011-2020, the 
global surface temperature rose by 1.1ºC compared to 
the pre-industrial era (1850-1900) [1]. Simultaneously, 
the integration of data, computing power, and the real 
economy has brought opportunities for transformative 
changes in production and lifestyle [2]. However, it 
has also posed challenges to sustainable development. 
As a major carbon-emitting country, the Chinese 
government has pledged to achieve carbon peaking  
by 2030 and carbon neutrality by 2060 (referred to as 
the “dual-carbon” goal). According to statistics from  
the Ministry of Industry and Information Technology,  
by the end of 2022, China’s computing power has 
reached 180EFLOPS, ranking second globally.  
At the same time, data centers consumed 216.6 billion 
kilowatt-hours of electricity (equivalent to the annual 
power generation of two Three Gorges dams), resulting 
in 135 million tons of carbon emissions (accounting 
for 1.14% of the national total emissions). It is evident 
that exploring the environmental effect of large-scale 
computing project such as National Supercomputing 
Center (NSC) and investigating underlying driving 
factors are of great significance for promoting  
the green transformation of computing infrastructure.

Existing research reveals the multifaceted impact of 
digital infrastructure on the environment. Proponents 
highlight its role in boosting production and energy 
efficiency [3-7], thus reducing carbon emissions 
through decreased per-unit energy consumption 
(known as the “substitution effect”) [8]. Furthermore, 
new digital infrastructure fosters innovation and 
accelerates industrial upgrades [3, 6, 9]. The digital 
economy’s growth also drives improved public sector 
environmental governance and promotes eco-conscious 
consumer attitudes [3, 5, 10]. Conversely, critics argue 
that digitization can pose a significant environmental 
burden [11-14]. The digital industry itself is energy-
intensive [15]. While digital technology enhances 
productivity, it can lead to lower product/service prices, 
potentially increasing energy use through higher 
demand [5,16,17]. In summary, digitization’s impact on 
the environment follows diverse pathways, resulting in 
a complex, nonlinear, inverted U-shaped relationship, as 
seen in the literature [12, 16, 18, 20].

This article focuses on the environmental impact 
of NSCs, aim to examine their influence on regional 
carbon emissions and to clarify the driving factors 
behind the carbon emissions through intercity 
heterogeneity analysis. The by doing so, this study 
seeks to identify feasible measures for the green 
transformation of NSCs. Regarding the assessment 
about the environmental effect of digitization, existing 
research covers specific technological [8, 12, 14, 18], 
as well as the implementation of national-level digital 
infrastructure policies [3, 4, 10, 11, 13, 21-24]. Some 
studies have conducted comprehensive evaluations about 

the environmental effect of digitization using digital 
economy indices [6, 9, 16, 19]. However, there is still a 
need for further literature on the environmental impact 
assessment of large-scale computational (research) 
infrastructure project. particularly in systematically 
delineating the underlying drivers of carbon emissions 
for it.

Compared to the existing body of knowledge, this 
study’s marginal contribution and distinctiveness lie in 
the following aspects:

(1) It extends the evaluation of carbon emissions in 
digital infrastructure by incorporating computational 
power and explores NSC carbon emissions variations 
among cities, shedding light on pathways to greener 
computational infrastructure. (2) Existing literature 
highlights digitization’s positive impact on specific 
socioeconomic factors, supporting environmental 
sustainability. However, it often overlooks the energy 
consumption and structural issues within digital 
infrastructure itself. Building upon Berkhout and 
Hertin’s work [5], this study integrates direct and 
indirect effects within a comprehensive framework 
composed of energy consumption and energy structure. 
(3) Treating NSC as a quasi-natural experiment, this 
study employs Quistorff and Galiani’s multiple synthetic 
control estimation method [25], which mitigates 
subjectivity in control group selection, overcomes 
traditional synthetic control method limitations, and 
provides robust statistical inferences beyond individual 
object assessments.

Research Foundation and Mechanism 
Framework

Direct and Indirect Effects of Carbon Emissions 
from Digital Technology

The distinction between the direct and indirect 
effects of digital technology on the environment can 
be traced back to the research by Berkhout and Hertin. 
They categorized the environmental impact of ICT into 
three types: direct effect, indirect effect, behavioral 
and structural effect, which goes beyond the traditional 
binary understanding [5]. Specifically, the negative 
impacts resulting from the production, use, and disposal 
of ICT devices are categorized as direct effect, while 
indirect effect include the productivity improvements 
brought about by ICT applications and the wider 
dissemination of related products (dematerialization). 
Structural and behavioral effect refer to the series 
of impacts ICT have on economic structure and 
demand behavior. Subsequently, the aforementioned 
categorization about environmental impacts of digital 
technology has also been termed as first-order effect 
(direct effect, the demand for materials and energy 
throughout the lifecycle of digital technology) and 
higher-order effect (indirect effect, the structural 
and behavioral effect) [17]. Similarly, this logical 
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classification can be applied in the evaluation of carbon 
emissions from digital technology [7, 26]. 

It is worth noting that despite significant progress 
in understanding the complex relationship between 
digital technology and environmental sustainability, 
the categorization of direct and indirect effects varies 
considerably across different literature. In the study 
of Yi et al., they classify aspects including digital 
technology, industrial digitization, digital governance, 
etc. as direct impacts, while considering changes in 
energy structure as indirect impacts [27]. Wang et 
al. distinguish indirect effect into scale effect (added 
value of the tertiary industry), structural effect (energy 
structure), and technological effect (green patent), which 
aligns with the understanding of Zhang et al. and Dong 
et al. [6, 10]. Tang and Yang elucidate the direct effect 
of digital infrastructure on carbon emissions from the 
perspectives of energy consumption and environmental 
governance, while analyzing potential indirect effect 
from aspects like residential consumption behavior and 
energy factor allocation [11].

Among these studies, the works of Luan and He  
et al. stand out as the most typical examples. The 
former, contrary to Berkhout and Hertin, describes 
direct effect as the positive impacts robots directly  
bring to the environment, while portraying indirect 
effect as the negative consequences they generate  
[28]. The latter, similar to Berkhout and Hertin, 
characterizes direct effect as the increased electricity 
consumption due to digital transformation, while 
including a series of positive impacts as part of the 
indirect effect, including productivity enhancement, 
easing of enterprise financing constraints, and energy 
conservation [4].

Mechanism Framework

Based on the above analysis, two important premises 
can be summarized. 

Firstly, the core factors through which digital 
technology affects greenhouse gas emissions are 
energy consumption and energy structure. Secondly, 
there is notable variation in the interpretation of direct 
and indirect effects in existing research. Hence, before 
constructing the mechanism framework in this study, 
it’s essential to clarify their meanings in the context 
of NSC’s impact on carbon emissions. this paper will 
explore the driving factors (mechanisms) behind the 
carbon emissions effect of supercomputing centers 
at the city level, focusing on the aspects of energy 
consumption and energy structure.

NSCs demand substantial electricity for data 
handling and high-performance computing tasks 
[29]. They also require power to maintain equipment 
and stable environments. In this study, we define 
the electricity used during NSC operations as direct 
carbon emissions. As for the indirect effect. Their 
supercomputers accelerate research and calculations, 
saving energy through optimized algorithms and 

parallel computing. NSCs offer digital services to local 
institutions, enhancing resource allocation, including 
energy. This transforms the regional industry towards 
high-tech, efficient, and cleaner production. Precise 
prediction and simulation improve energy allocation, 
reducing waste. However, better computing efficiency 
may boost demand in research and industry, potentially 
increasing energy use. 

In terms of energy structure, regional carbon 
emissions linked to NSC construction depend on the 
local energy mix [30]. In simple terms, if coal and 
other non-clean energy sources dominate electricity 
generation during and after NSC construction, the 
supercomputing center’s power-intensive operation will 
increase CO2 emissions (direct effect). The indirect 
effect focuses on shifts in energy structure resulting 
from NSC. As mentioned earlier, NSCs support  
R&D, including clean energy technology development, 
like the joint CO2 electrocatalytic reduction project  
by Chengdu’s NSC and Chongqing University, aiming  
to convert CO2 into new energy products. Additionally, 
the NSC’s higher energy use can drive the region 
towards greener digital infrastructure. For example, 
NSC in Jinan established an “energy pool” with clean 
and renewable energy sources, such as solar and 
geothermal, to reduce the NSC’s environmental impact.

Based on the above, we have visualized the research 
mechanism of this study as shown in Fig. 1.

Material and Methods

Research Object

Since 2009, China has established nearly a dozen 
national-level NSCs in various cities, considering 
high-performance computing as vital for technological 
advancement. These NSCs, serving as hubs for 
innovation, utilize supercomputers for research in fields 
like physical chemistry, astronomy, climate meteorology, 
biomedical sciences, etc. While driving technological 
progress, they also contribute to local socio-economic 
development. Supported by national science and 
technology initiatives such as the “863” program, 
China has made significant strides in supercomputing 
over the past two decades. Considering the potential 
lag effect of NSC influence, This study focuses on five 
major NSCs established between 2009 and 2011 in 
Tianjin, Shenzhen, Changsha, Guangzhou, and Jinan. 
These NSCs employ supercomputers from the “Tianhe,” 
“Sunway,” and “Dawning” series, which have held 
leading global positions (https://www.top500.org/lists/
top500/). It should be noted that China’s supercomputers 
do not perform as remarkably in the Green500 rankings 
as they do in the Top500. The latest list in June 2023 
showed that although China’s supercomputers occupied 
two seats in the Top500’s top ten, none of them appeared 
in the top 60 of the Green500 list. This indicates  
that there is still significant room for improvement  
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in the energy efficiency of China’s supercomputers, 
which may lead to higher environmental costs.

As shown in Fig. 2 below, cities hosting national-
level NSCs tend to have higher carbon emissions.

Methodology

In the evaluation of the environmental effects of 
digital technology, some studies use instrumental 
variable methods for identification [9, 11, 27], but 
obtaining accurate and unbiased estimation results places 
high demands on the selection of instrumental variables. 
To examine the impact of NSC construction on urban 
carbon emissions, this study treats NSC construction 
as a quasi-natural experiment and conducts the analysis 
within a causal inference framework. Currently, for the 
evaluation of exogenous shocks or policy effects, the 
most common approach is the difference-in-differences 
method [3, 10, 11, 13, 20-22, 24]. This method compares 
the sample that is affected by the shock or policy with 
the sample that is not affected to assess the impact of 
the shock or policy. However, a critical issue is how to 
choose an appropriate comparison sample. To overcome 
this problem, this study adopts the Synthetic Control 
Method proposed by Abadie et al. [31, 32]. This data-
driven method fits a synthetic control group that closely 
resembles the treatment group based on multiple control 
units, reducing selection bias and endogeneity problems.

In the context of this study, we have data on the 
carbon emissions of K+1 cities over time t∈[1, T]. 
Among them, Sit

N represents the carbon emissions of 
the city i at time point t without NSC shock, and Sit

I  
represents the carbon emissions of the city i at time 
point t after the construction of NSC. If T0 is the year 
of NSC construction, when t<T0, Sit

N = Sit
I; and when 

NSC is constructed, i.e., t≥T0, ait = Sit
I – Sit

N represents 
the carbon emissions effect of NSC. For a specific 
NSC city, we can only observe the carbon emissions 
value Sit

I  after the construction of NSC, and we cannot 
observe the carbon emissions value Sit

N when NSC is not 
constructed during the same period. This study uses the 
factor model proposed by Abadie et al. for estimation 
[31]:

              (1)

In Equation (1), δt represents the time fixed effects 
that affect the sample cities, Zt denotes the observable 
predictor variables, λt is the unobservable (1×F) vector of 
common factors, μi is the (F×1) vector of unobservable 
city fixed effects, and εit is the short-term shock 
(unpredictable) with a mean of 0 at the city level.

Considering a city, i = 1, implementing NSC 
construction, while the remaining K cities have not 
conducted NSC construction. In pursuit of the outcome 

Fig. 1. Mechanism diagram.
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       (3)

Finally, the estimated value of the NSC carbon 
emissions effect ait is obtained as follows:

                 (4)  

In the above equation, t∈[T0, T]. To overcome the 
limitations of the traditional synthetic control method 
regarding the number of treated units, this study employs 
the synth_runner program developed by Quistorff and 
Galiani in Stata. This program allows for the presence 
of multiple treated units and provides p-values for 
statistical inference [25].

Data Indicators and Research Process

Dependent Variable

Carbon emissions (million tons). This study aims to 
assess the carbon emission effect of NSCs; therefore, 
city-level CO2 emissions are chosen as the dependent 
variable. The intercity carbon emission data are 
sourced from China Emission Accounts and Datasets 

variables for region i unaffected by the influence of 
NSC, we designate K other cities as control units and 
employ a non-parametric weighting method to model 
the characteristics of the experimental group. Thus, 
Let W be a (K×1) weight vector defined as W = (w2, 
w3, ..., wK+1), where WK≥0, w2 + ... wK+1 = 1, and each W 
represents a virtual synthetic control combination, i.e., 
weights for the K cities. For NSC cities, W represents 
the synthetic control contribution rate of each city in the 
control group to the NSC city, weighting the outcome 
variables for each control city.

 
(2)       

Assuming the existence of a weight vector W* = (w2
*, 

w3
*, ..., w*

K+1) such that for t<T0, 
, and . 

According to Abadie’s proof, if  is a non-
singular matrix, and there is an adequate time 
period for pre-NSC shock matching, the formula (3) 
approaching zero could be approved:

Fig. 2. Carbon emission and NSC distribution.



Haodong Y., Gaofeng W.1714

(CEADs, www.ceads.net/data/county), which calculates 
carbon emissions for various dimensions in China 
based on the consumption of fossil fuels in different 
industries multiplied by emission factors. The inventory 
encompasses emissions from 47 socioeconomic sectors, 
emissions related to 17 types of fossil fuel combustion 
and cement production processes. It adopts the carbon 
dioxide emission accounting method recommended by 
the Intergovernmental Panel on Climate Change [33]. 
Due to its advantages of consistent statistical calibration 
and strong continuity, this database is widely used in 
various research studies [3, 9, 27].

Mechanism Variables

Energy consumption and energy structure are 
important variables that drive the carbon emission 
effect of NSCs in this study. For the former, considering 
that the main energy consumption of national 
supercomputing centers is electricity (high-performance 
computing requires a significant amount of power 
to operate supercomputers and related equipment), 
this study selects the total industrial electricity 
consumption (hundred million kilowatt-hours) in cities 
as a representation of regional energy consumption. As 
for the latter, this study refers to the approach used by 
Liu et al. to measure the energy structure of a region 
by constructing a low-carbonization index of energy 
consumption [34]. The specific calculation process is as 
follows: First, the consumed energy is divided into three 
categories: coal, oil and gas, other energy consumption. 
The percentage of each energy category is denoted by α, 
β, and γ, respectively, and they form a three-dimensional 
vector E as a spatial representation. Second, the cosine 
values of the angles between this vector E and the vectors 
representing high-to-low carbon energy consumption 
(E0

1 = (1,0,0), E0
2 = (0,1,0), E0

3 = (0,0,1)) are calculated 
as follows: cosθ1 = α ⁄(α2 + β2 + γ2), cosθ2 = β⁄(α2 + β2 

+ γ2), cosθ1 = γ⁄(α2 + β2 + γ2). By weighting the angles, 
the low-carbonization index of energy consumption is 
constructed:

 
(5)

Predictive Variable

In the context of carbon emissions and their 
influencing factors, IPAT model was first proposed by 
Ehrlich et al. in 1971, which suggests that environmental 
changes are the result of the joint impact of population 
(P), affluence (A), and technology (T) [35]. The equation 
is shown below:

                                 (6)

Based on this theory, the STIRPAT model, introduced 
by York et al., further incorporates the concept of 

differential elasticity coefficients and random errors 
[36], which is widely used to analyze the relationship 
between human activities and environmental changes:

                          (7)

In this study, we consider several social and 
economic variables as predictive factors to ensure that 
the synthetic control group and the treatment group 
have similar carbon emission characteristics before 
the construction of  NSC. These variables include 
annual average population (ten thousand people) and 
per capita GDP (ten thousand yuan) to represent urban 
population and economic scale respectively [3, 10, 16, 
22]. Additionally, green patent grants and the ratio of 
fiscal technology investment to GDP is used as a proxy 
for urban technology level [3, 6, 27]. Furthermore, 
industrial structure and the values of the dependent 
variable before the NSC impact in each period are 
included as a predictive variable in the model [3, 6, 10, 
27].

Taking into account that the Chinese Energy 
Statistical Yearbook is only updated until the year 2020, 
and prior to 2003, a significant number of cities have 
missing values in their predictive variables. Hence,this 
paper employs a panel dataset comprising Chinese cities 
from 2003 to 2020. Regarding data sources, urban green 
patent data is derived from the Chinese Research Data 
Services Platform (CNRDS). The carbon emission data 
is extracted from the CEADs database. Additionally, 
other data are obtained from the China City Statistical 
Yearbook and China Energy Statistical Yearbook. In the 
selection of the control group, to ensure comparability 
between the treatment and control groups, 70 large 
and medium-sized cities (excluding the NSC cities) are 
chosen as the control group. This list of cities is publicly 
disclosed by the National Bureau of Statistics of China 
(http://www.stats.gov.cn/sj/). Cities with later NSC 
constructions, like Wuxi and Chengdu, are excluded 
from the sample. For data processing, indicators 
including per capita GDP and year-end total population 
are logarithmically transformed, while some missing 
values for predictive variables are addressed through 
interpolation or replaced with the mean. The descriptive 
statistics of the data are presented in Table 1. To enhance 
the logical clarity of the empirical part in this study, we 
depict the flowchart of our research in Fig. 3, with the 
research procedure contingent upon the results of testing 
the current issues.

Results and Discussion

Baseline Test

In this study, we first estimate the overall NSC 
carbon emission effect. As shown in Fig. 4, the solid 
line on the left graph represents the carbon emissions 
of the entire treatment group, including cities like 
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Tianjin, Shenzhen, and Changsha. The dotted line 
reflects the synthetic control group’s CO2 emissions, 
which is weighted from the control group. The vertical 
dotted line represents the year when the computational 
infrastructure construction began. The left side of the 
dotted line indicates the carbon emissions trend of the 
treatment and synthetic control groups before the NSC 

impact. It can be observed that before the construction 
of NSC, the two curves nearly overlapped, indicating 
that the control group cities provided a good fit for the 
carbon emissions trend of the treatment group before 
NSC. However, starting from the second year of NSC 
construction, the carbon emission values of the treatment 
group cities show a significant increase compared to the 

Table 1. Descriptive statistics.

Variable Obs Mean Std. Dev. Min Max
Outcome variable

Carbon emission 1242 40.488 33.185 1.124 230.712 
Mechanism variable

Energy consumption (scale) 1242 129.953 148.207 1.340 805.760 
Low carbonization level (structure) 1242 5.530 0.388 4.846 6.956 

Predictor variable
Industrial structure 1242 44.944 9.201 15.050 66.330 
Green innovation 1242 197.334 549.557 0.000 6936.000 

R&D input 1242 0.003 0.003 0.000 0.025 
Economy 1242 9.860 0.971 7.262 12.788 
Population 1242 6.251 0.629 3.920 8.138 

Fig. 3. Research Procedure.
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synthetic control group cities. The difference between 
the treatment and control group cities increases over 
the years, reaching a peak difference of approximately 
10 million tons. These results suggest that the treatment 
group cities experienced a significant increase in carbon 
emissions during the sample period, which we attribute 
to a strong association with the construction of NSC.

To further validate this conjecture, we conduct 
a placebo test following the approach of Abadie et al. 
to assess the robustness of the evaluation results [32]. 
In this test, we assume that cities in the control group 
also “implemented” NSC construction during the same 
period and constructed synthetic control groups for each 
city in the control group using the same method. We 
then calculate the carbon emission difference between 
the actual cities and the synthetic cities, considering it 
as the “effect” of “implementing” NSC construction for 
each city. Finally, we compare these placebo effects with 
the actual carbon emission effect of the real treatment 
group (cities like Tianjin, Shenzhen, Changsha, etc.). It 
is worth noting that the good fit between the treatment 
and control groups before the NSC impact is crucial 
for evaluating the treatment effect. Therefore, in this 
study, we use ten times the RMSPE value before NSC 
construction as the threshold to exclude estimates that 
exceed this threshold. Using the program developed 
by Quistorff and Galiani  [25], we directly provide the 
P-values for statistical inference after conducting the 
placebo test, as shown on the right side of Fig. 4. It can 
be observed that the P-value for the treatment effect 
decreases to below 0.1 in the last period, indicating 
that to some extent, the NSC carbon emission effect is 
statistically significant (though only at the 10% level).

Heterogeneity Analysis

The results of the baseline test show that, the carbon 
emission effect of NSC construction is marginally 
significant, answering the question in the flowchart 
“Does NSC lead to an increase in urban carbon 
emissions?” At the same time, we also observe that the 
carbon emission effect is only statistically significant at 
the 10% level in the final period. Therefore, we move on 
to the second question in the study, “Does this impact 
vary across different cities?”. This aims to explore 
whether the marginally significant results are driven 
by the heterogeneous effects of NSC construction. In 
this study, we evaluate the carbon emissions effect of 
NSC construction in different cities, including Tianjin, 
Shenzhen, Changsha, Guangzhou, and Jinan. Based on 
the results, we divide them into two groups: “No carbon 
emission effect” and “Existence of carbon emission 
effect,” as shown in the top and second rows of Fig. 5, 
respectively.

Looking closely, cities like Guangzhou, Jinan, 
and Shenzhen do not experience a significant increase 
in carbon emissions due to NSC construction. For 
Guangzhou, although the difference in actual carbon 
emissions from the synthetic control group increases 
after NSC, the carbon emission effect is not statistically 
significant (as shown in the P-value distribution on 
the right side of Fig. 5). Similar results are observed 
for Jinan and Shenzhen. In contrast, both Tianjin and 
Changsha show significant carbon emission effects 
from NSC construction. As shown in the bottom part 
of Fig. 5 (second row), before NSC impact, the carbon 
emissions of the synthetic control group closely mimic 

Fig. 4. Baseline test results (overall).
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those of the treatment group, indicating a good fit for 
the carbon emissions characteristics of the control group 
before NSC construction. After the NSC, the carbon 
emission difference between the treatment group and 
the synthetic control group rapidly widens in one to 
two periods and receives statistical support. The carbon 
emission effect of Tianjin’s NSC construction remains 
statistically significant at the 1% level, while Changsha’s 
carbon emission effect becomes statistically significant 
at the 5% level after the mid-term.

Carbon Emission Driving Factors Analysis

Energy Consumption

The heterogeneous impact of NSC construction 
on carbon emissions in different cities prompts us to 
inquire about the reasons behind the varying effects on 
environmental sustainability. As analyzed in section 
2.2, substantial energy consumption is one of the 
main features of NSC construction and operation. To 
handle massive data and conduct high-performance 
computing, a significant amount of electricity is 
required to power the supercomputing centers. The 
efficiency gains in computations may also lead to 
environmental rebound effects, further increasing the 
overall energy demand. However, if the construction 
of supercomputing centers facilitates local industrial 
upgrading and green innovation, and optimizes 
algorithms during task execution, it can help reduce 
their own energy consumption and even decrease the 
region’s total energy consumption. Therefore, in this 
section, we aim to explore the heterogeneous impact 

of NSC construction on regional energy consumption 
and attempt to answer the question “Specific factors 
that lead to different energy consumption levels?” We 
use industrial electricity consumption as the outcome 
variable and conduct synthetic control estimations for 
each city, as shown in Table 2. The “Absolute Effect” 
represents the difference in carbon emissions between 
the treatment group and the synthetic control group, 
while the “Relative Effect” is the ratio of this difference 
to the carbon emissions of the synthetic control group. 
It can be observed that for Tianjin and Changsha, the 
two cities with significant NSC carbon emission effects, 
NSC construction also led to an increase in local 
electricity consumption. For Tianjin, the treatment effect 
is significant at the 5% level in the six to eight periods 
after NSC construction. The peak value indicates that 
compared to the synthetic control group, Tianjin’s 
total industrial electricity consumption increased by 
nearly 160 billion kilowatt-hours. A similar situation 
is observed in the evaluation of Changsha, with only 
differences in scale and significance.

Therefore, it can be inferred that NSC, by increasing 
local energy consumption, exacerbates urban CO2 
emissions. However, interestingly, when we examine 
cities with “no carbon emission effects,” there were 
still differences in the results. On one hand, the results 
for Shenzhen and Guangzhou were similar to Tianjin 
and Changsha, where NSC construction significantly 
drove up local industrial electricity consumption. This 
implies that although NSC led to increased energy 
consumption in Shenzhen and Guangzhou, it does not 
exacerbate CO2 emissions in these regions. On the other 
hand, the synthetic control estimation for Jinan shows 

Fig. 5. Heterogeneity test of NSC carbon emission effects.
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that NSC construction does not significantly increase 
local industrial electricity consumption. This may be 
related to the intensity and efficiency of operation at 
Jinan’s supercomputing center, or it could be attributed 
to the benefits of NSC in improving the city’s production 
and energy use efficiency. Overall, in this section, we 
discover that an increase in energy consumption is not a 
sufficient condition for the NSC carbon emission effect, 
as demonstrated by the results from cities like Shenzhen 
and Guangzhou.

Energy Structure

Although the results of the analysis in section 4.3.1 
suggest that the insignificant carbon emission effects 
of NSC construction in some cities may be due to the 
lack of significant increase in local energy consumption 
(as observed in Jinan), the estimation results for cities 
like Shenzhen indicate that the energy consumption 
scale is not a sufficient condition for significant NSC 
carbon emissions. In this subsection, we focus on the 
perspective of energy structure. In fact, some studies 

Table 2. The impact of NSC on urban energy consumption.

Energy consumption (scale)

Shenzhen Jinan

Year Treated Synthetic Absolute 
Effect

Relative 
Effect Treated Synthetic Absolute 

Effect
Relative 
Effect

Post_1 323.753 277.460 46.293* 16.68% 120.902 130.741 -9.839 -7.53%

Post_2 397.410 312.852 84.558** 27.03% 95.946 130.454 -34.508 -26.45%

Post_3 418.636 320.290 98.346** 30.71% 96.365 136.046 -39.681 -29.17%

Post_4 423.241 316.227 107.014** 33.84% 97.480 132.768 -35.288 -26.58%

Post_5 439.359 322.643 116.716** 36.18% 93.831 123.519 -29.689 -24.04%

Post_6 472.289 313.685 158.604** 50.56% 135.627 122.552 13.076 10.67%

Post_7 477.103 330.497 146.606** 44.36% 131.998 180.429 -48.431 -26.84%

Post_8 483.367 316.313 167.054** 52.81% 121.503 189.955 -68.452 -36.04%

Post_9 487.223 516.277 -29.054 -5.63% 221.528 192.181 29.347 15.27%

Post_10 490.771 524.493 -33.722 -6.43% 171.516 191.068 -19.552 -10.23%

Post_11 503.685 502.845 0.840 0.17%

Post_12 497.228 513.669 -16.441 -3.20%

Tianjin Changsha

Treated Synthetic Absolute 
Effect

Relative 
Effect Treated Synthetic Absolute 

Effect
Relative 
Effect

Post_1 413.300 416.967 -3.667 -0.88% 22.361 26.032 -3.671 -14.10%

Post_2 492.270 472.684 19.586 4.14% 30.800 27.383 3.418 12.48%

Post_3 501.448 471.269 30.180 6.40% 33.284 38.198 -4.914 -12.86%

Post_4 510.211 488.545 21.665 4.43% 38.317 30.737 7.580 24.66%

Post_5 546.373 508.978 37.395 7.35% 38.745 35.918 2.828 7.87%

Post_6 559.073 482.229 76.844** 15.94% 42.384 36.169 6.215 17.18%

Post_7 552.295 458.375 93.921** 20.49% 52.731 42.667 10.064 23.59%

Post_8 542.340 373.187 169.153** 45.33% 130.287 84.204 46.083 54.73%

Post_9 517.983 607.917 -89.934 -14.79% 148.868 89.430 59.439* 66.46%

Post_10 554.251 614.823 -60.572 -9.85% 156.902 92.961 63.941** 68.78%

Post_11 557.108 631.428 -74.320 -11.77% 152.885 91.195 61.690** 67.65%

Post_12 555.680 623.125 -67.446 -10.82%

The treatment effect of NSC in Guangzhou is statistically significant and positive at the 5% level in the fifth to seventh periods after 
the impact, with absolute effects of 58.169, 97.502, and 128.727, respectively.
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have emphasized the crucial role of energy composition 
in the cost of supercomputing environments [29, 30, 37, 
38]. Even if a supercomputer center is more efficient, its 
green advantage will gradually diminish if it relies on 
a considerable share of non-renewable energy. Based 
on the analysis in section 2.2, we explore the role of 
energy structure from both direct and indirect effects. 
Let us now proceed with specific examples and data 
illustration.

(1) Direct effect
If a region has a higher proportion of clean energy in 

its energy structure, even if the operation of NSC leads 
to an increase in regional electricity consumption, the 
negative impact on the environment is expected to be 
smaller, provided that most of this electricity is produced 
from clean energy sources. Conversely, if the proportion 
of non-clean energy, such as coal, is high in the energy 
structure, the impact would be the opposite. To verify 
this hypothesis, we construct two major indicators: the 
proportion of coal and the low-carbonization index (as 
described in section 3.3.2), and match them with the 
corresponding cities. 

Using data from the China Energy Statistical 
Yearbook and converting various energy types into 
standard coal based on energy conversion coefficients, 
we obtain the proportion of various energy sources.  
As shown in Fig. 6, we divide the provinces into two 

groups based on the significance of NSC carbon emission 
effect: G1 (significant, consisting of Tianjin and Hunan) 
and G2 (insignificant, consisting of Guangdong and 
Shandong). It is evident that both before and after the 
NSC shock, the average coal proportion in G2 provinces 
is significantly lower than that in G1 provinces (with 
a peak difference of 15 percentage points). Similarly, 
the low-carbonization index in G2 provinces also 
has a significantly higher average compared to G1 
provinces (with a peak difference of 0.5). The above 
results demonstrate that, despite NSC construction 
in Tianjin, Changsha, Shenzhen, and Guangzhou all 
leading to an increase in regional energy consumption, 
the carbon emission effects of Tianjin and Changsha 
supercomputing centers are significantly higher than 
those of the latter two cities. This is largely attributed to 
their higher proportion of coal in the energy structure.

In the lower part of Fig. 6, we can observe the 
specific evolution trend of energy structure in different 
provinces. It is evident that the coal proportion 
in Guangdong Province (covering Shenzhen and 
Guangzhou) is significantly lower than that of Hunan 
and Tianjin (conversely, its low-carbonization index 
is higher than the latter two). In fact, both Tianjin and 
Changsha are typical industrial cities in China. Tianjin 
is one of the birthplaces of modern industry in China, 
and industries such as automobile manufacturing, 

Fig. 6. Evolution trend of energy structure in supercomputing cities.
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petrochemicals, metallurgy, and steel are dominant, 
leading to a high dependence on high-carbon energy 
sources. On the other hand, Changsha faces severe 
energy resource shortages, with over 80% of its energy 
needs being supplied from other regions, and its coal 
consumption proportion is particularly prominent. In 
specific data, in the year 2005, the coal proportion in 
Changsha’s energy structure reached 68%. Moreover, 
the average value of the sample period for coal 
proportion ranks first among the supercomputing cities.

(2) Indirect effect
The impact of energy structure on NSC carbon 

emissions is not only determined by the existing 
energy composition but also reflected in its indirect 
effects. In other words, NSC construction can also 
influence the energy structure, thereby affecting its 
own carbon emissions. Therefore, this study takes the 
low-carbonization index as the outcome variable and 
conducts another set of synthetic control estimations 
for each city. The results are shown in Table 3. Among 
the cities with “no carbon emission effects,” only the 

Table 3. The impact of NSC on urban energy structure.

Low carbonization level (structure)

Shenzhen Jinan

Year Treated Synthetic Absolute 
Effect

Relative 
Effect Treated Synthetic Absolute 

Effect
Relative 
Effect

Post_1 5.833 5.833 0.000 0.01% 5.348 5.318 0.030 0.57%

Post_2 5.913 5.903 0.010 0.17% 5.332 5.313 0.019 0.36%

Post_3 5.910 5.899 0.011 0.18% 5.463 5.387 0.076 1.40%

Post_4 5.957 5.947 0.009 0.16% 5.427 5.398 0.029 0.53%

Post_5 6.094 6.078 0.017 0.27% 5.681 5.410 0.272*** 5.02%

Post_6 6.051 6.037 0.014 0.23% 5.867 5.441 0.426*** 7.84%

Post_7 6.115 6.101 0.015 0.24% 5.906 5.544 0.362*** 6.53%

Post_8 5.638 5.681 -0.043 -0.76% 6.174 5.646 0.527*** 9.34%

Post_9 6.242 6.229 0.014 0.22% 6.178 5.678 0.500*** 8.82%

Post_10 6.322 6.298 0.024 0.38% 6.185 5.707 0.478** 8.37%

Post_11 6.346 6.320 0.026 0.41%

Post_12 6.394 6.364 0.030 0.47%

Tianjin Changsha

Treated Synthetic Absolute 
Effect

Relative 
Effect Treated Synthetic Absolute 

Effect
Relative 
Effect

Post_1 5.406 5.521 -0.115* -2.09% 5.433 5.123 0.310***  6.05%

Post_2 5.594 5.629 -0.035 -0.62% 5.488 5.175 0.313**  6.04%

Post_3 5.601 5.567 0.034 0.61% 5.472 5.198 0.274**  5.27%

Post_4 5.581 5.538 0.044 0.79% 5.504 5.271 0.233**  4.41%

Post_5 5.630 5.586 0.044 0.79% 5.498 5.257 0.241**  4.58%

Post_6 5.665 5.617 0.048 0.85% 5.287 5.266 0.022 0.41%

Post_7 5.749 5.607 0.142* 2.53% 5.261 5.324 -0.063 -1.18%

Post_8 5.826 5.597 0.229* 4.09% 5.189 5.400 -0.211 -3.91%

Post_9 5.942 5.709 0.234* 4.10% 5.337 5.513 -0.176 -3.19%

Post_10 5.992 5.854 0.138 2.35% 5.382 5.556 -0.174 -3.13%

Post_11 6.014 5.838 0.176 3.01% 5.438 5.586 -0.148 -2.65%

Post_12 6.014 5.989 0.024 0.40%

The treatment effect of NSC in Guangzhou is not statistically significant in all periods after the shock.
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treatment effect of Jinan is statistically significant. 
On the other hand, for cities with “carbon emission 
effects” (Tianjin, Changsha), NSC construction also 
contributes to improving the urban energy structure. 
However, the magnitude of this effect does not reach 
the level of altering the fact of higher coal proportion in 
cities like Tianjin and Changsha. Therefore, it does not 
significantly reduce the environmental costs incurred 
by NSC construction.

Conclusions

Research Findings

As data and computing resources become deeply 
embedded in the real economy, it presents opportunities 
for high-quality socio-economic development, but also 
challenges in the fields of energy, environment, and 
climate. Existing literature has revealed the complex 
impact of digitization on the environment. On one hand, 
it can improve production and energy efficiency, promote 
innovation and industrial upgrading, thus reducing 
carbon emissions. On the other hand, the digital 
industry itself is energy-intensive, which may increase 
environmental burden and expand consumption demand 
through rebound effects, leading to an expansion of 
energy consumption. This study extends the assessment 
of carbon emissions from digital infrastructure to 
the computational level. Drawing on the research 
framework of direct and indirect effects based on 
energy consumption  and energy structure by Berkhout 
and Hertin [5], we treat the construction of National 
Supercomputing Centers (NSCs) as a quasi-natural 
experiment. Utilizing the multiple synthetic control 
estimation proposed by Quistorff and Galiani [25], we 
examine the impact of NSCs on urban carbon emissions 
and explore feasible pathways for green transformation 
of computational infrastructure through the inter-city 
heterogeneity of NSC carbon emission effects. Specific 
research findings include:

(1) To a certain extent, NSCs significantly promote 
the increase in regional carbon emissions, but the 
carbon emission effects show inter-city heterogeneity. 
In some cities, NSCs do not significantly exacerbate 
local CO2 emissions. Existing research has explored 
various dimensions, including enterprises [4], cities [3, 
10, 11, 13], regions [6, 9, 19], etc., providing positive 
impacts of digitization on environmental sustainability 
from multiple perspectives including digital economy 
[3, 6, 9, 19, 27], specific digital technologies (e.g., the 
internet, big data, artificial intelligence) [12, 15, 14, 28], 
and digital infrastructure [10, 11, 13, 20-24]. Consistent 
with the research results of Rao et al., Tang and 
Yang, and Wu et al. [11, 13, 20], we find that China’s 
National Supercomputing Centers have significant 
carbon emission effects. This is also in line with the 
conclusion of Bianchini et al. (2022) [12], who used 

EU data and found that the development of local digital 
technologies increased greenhouse gas emissions, with 
big data and computational infrastructure having the 
highest environmental costs. This study extends the 
investigation about the environmental effects of network 
infrastructure and integrated infrastructure, and further 
explores the perspective of computational infrastructure. 
The inter-city heterogeneity of NSC carbon emission 
effects provides a basis for exploring its driving factors 
in this study.

(2) Despite NSCs primarily contributing to the 
increase in local carbon emissions through the channel 
of elevated energy consumption, specifically industrial 
electricity consumption, the estimation results for 
cities like Shenzhen indicate that energy consumption 
is not a sufficient condition for significant NSC carbon 
emissions. In other words, although NSCs lead to 
an increase in energy consumption in these areas, it 
does not significantly promote a rise in local carbon 
emissions. Energy consumption is considered a crucial 
variable in evaluating the environmental effects 
of digital technologies, yet there is still no unified 
conclusion on whether digitization can reduce energy 
consumption. As a typical comparison, Wang et al.’s 
research demonstrates that digital transformation can 
lower electricity consumption and intensity through 
technological optimization and industrial upgrading 
[22]. However, in the study by Tang and Yang, digital 
infrastructure increased urban CO2 emissions by 
inducing a rise in per capita energy consumption, total 
energy consumption, and energy intensity [11]. The 
findings of this study complement this knowledge and 
confirm the significant electricity consumption caused 
by large-scale computational projects at the local level.

(3) The energy structure is a critical factor influencing 
the carbon emissions of NSC. This study finds that those 
supercomputing cities with significant carbon emission 
effects often have a higher proportion of coal in their 
energy structure (or lower low-carbonization index). 
Furthermore, we also discover that although NSC 
construction significantly promotes the improvement of 
low-carbonization levels in some supercomputing cities, 
this effect does not change the current situation of high 
coal proportion in cities like Tianjin and Changsha. As a 
result, it does not significantly reduce the environmental 
costs generated by NSC construction. The above findings 
further corroborate the assertion made by Allen that, 
concerning green performance, the energy attributes of 
supercomputing centers (supercomputers) may be more 
critical than their efficiency [30]. Research results by 
Van der Tak revealed that the carbon emissions of the 
Dutch supercomputing facility SURF are zero because 
it uses 100% green energy [37]. In contrast, estimates 
of the carbon footprint of the Max Planck Institute for 
Astronomy in Germany and Australian researchers 
captured the contribution of supercomputing to carbon 
emissions because both entities use non-clean energy to 
varying degrees [29, 38].
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Practical Implications

Firstly, elevating energy efficiency and decreasing 
energy consumption. The research findings demonstrate 
that NSCs have markedly catalyzed an upsurge in 
carbon emissions. Mechanistic scrutiny further reveals 
that, excluding Jinan, the construction of NSCs in other 
cities has invariably led to a discernible augmentation 
in local energy consumption. Consequently, both the 
public sector and NSC operators should take steps to 
mitigate energy use. This includes optimizing hardware, 
choosing energy-efficient servers and processors, and 
implementing advanced energy management systems 
like Shenzhen’s “Upgrade and Replacement” project. 
Additionally, improving algorithms and task execution 
can reduce energy consumption in supercomputing 
centers.

Secondly, augmenting the proportion of clean 
energy and refining the energy structure. We find that, 
despite NSC leading to an escalation in urban energy 
consumption, it has not exacerbated CO2 emissions, as 
observed in Shenzhen and Guangzhou. This is largely 
attributed to the reduced reliance on non-clean energy 
sources in these cities. Therefore, in the future, drawing 
inspiration from the practices of the Netherlands’ 
supercomputing facility, SURF, there is an opportunity 
to further enhance the utilization of renewable energy 
sources in NSCs. Presently, the energy pool established 
by NSC in Jinan, comprising various clean energy 
sources like waste heat recovery, solar, and air energy, 
has been reported to contribute to an annual reduction 
of 21,600 tons of CO2 emissions.

Thirdly, expanding the spillover of knowledge 
and expediting regional emissions reduction progress. 
This study reveals that, whether in terms of energy 
consumption or energy structure, the contribution 
of NSCs to carbon reduction is relatively limited. 
Thus, improvements can be made from these two 
perspectives. On the one hand, NSC construction can 
foster urban sustainability through indirect effects on 
energy consumption channels, including enhancing 
computational efficiency, improving energy allocation 
capabilities, as well as promoting industrial structure 
upgrades. On the other hand, NSCs can collaborate 
with innovation hubs like universities and enterprises 
to provide computational support for green technology 
innovation, particularly in the realm of energy, 
thereby catalyzing the optimization of regional energy 
structures.
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